Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1,1'-Bis(4-fluorobenzyl)-3,3'-methylene-diimidazolium dibromide

Pi-Yun Cheng, Chih-Yuen Chen and Hon Man Lee*

National Changhua University of Education, Department of Chemistry, Changhua 50058, Taiwan

Correspondence e-mail: leehm@cc.ncue.edu.tw

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.009 \text{ Å}$ R factor = 0.047 wR factor = 0.123Data-to-parameter ratio = 19.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title structure, $C_{21}H_{20}F_2N_4^+\cdot 2Br^-$, the central C atom of the cation is located on a crystallographic twofold rotation axis. The dihedral angle between the imidazole rings is $75.50~(17)^\circ$.

Received 11 November 2006 Accepted 21 November 2006

Comment

Our group is currently interested in transition metal complexes of chelating *N*-heterocyclic carbene (NHC) ligands. These ligands can be typically derived from imidazolium salts. In our previous work (Lee *et al.*, 2004), we reported several bis(imidazolium) salts and their corresponding bidentate palladium bis(NHC) complexes. Among them was the Pd complex of 1,1'-bis(4-fluorobenzyl)-3,3'-methylenediimidazolium dibromide. We report here the crystal structure of the free ligand, (I).

The molecular structure of (I) is shown in Fig. 1. The central C atom lies on a twofold rotation axis. The structure is very similar to the analogous structures bearing a 4-methoxybenzyl (Lee *et al.*, 2004) and a 3-methoxybenzyl substituent (Lee & Chiu, 2004). In (I), the dihedral angle between the two methylene-linked imidazole rings is 75.50 (17)°, comparable to the angle of 78.02 (7)° reported for the 3-methoxybenzyl analog (Lee & Chiu, 2004).

Experimental

The title compound was prepared according to a literature procedure (Lee *et al.*, 2004). Crystals were obtained by slow diffusion of diethyl ether into a dimethylformamide solution of (I).

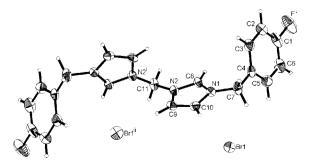


Figure 1 The molecular structure of (I), showing 35% displacement ellipsoids for non-H atoms. [Symmetry codes: (i) -x, y, $\frac{1}{2} - z$; (ii) 1 - x, 1 - y, 1 - z.]

© 2006 International Union of Crystallography All rights reserved

Crystal data

 $\begin{array}{lll} {\rm C}_{21}{\rm H}_{20}{\rm F}_2{\rm N}_4^{~2^+}\cdot 2{\rm Br}^- & Z=4 \\ M_r=526.23 & D_x=1.664~{\rm Mg~m}^{-3} \\ {\rm Monoclinic,~C2/c} & {\rm Mo~K}\alpha~{\rm radiation} \\ a=33.465~(11)~{\rm \mathring{A}} & \mu=3.89~{\rm mm}^{-1} \\ b=5.375~(2)~{\rm \mathring{A}} & T=298~(2)~{\rm K} \\ c=12.077~(4)~{\rm \mathring{A}} & {\rm Parallelepiped,~colorless} \\ \beta=104.93~(1)^\circ & 0.34~\times~0.20~\times~0.18~{\rm mm} \\ V=2099.0~(13)~{\rm \mathring{A}}^3 \end{array}$

Data collection

Bruker SMART 1000 diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.351$, $T_{\max} = 0.496$

6381 measured reflections 2506 independent reflections 1339 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.069$ $\theta_{\rm max} = 28.0^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.123$ S = 0.982506 reflections 132 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0473P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.58$ e Å⁻³ $\Delta\rho_{\rm min} = -0.40$ e Å⁻³

All H atoms were placed in calculated positions, with C—H = 0.95–0.99 Å, and included in the riding-model approximation, with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Science Council of Taiwan for financial support.

References

Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.

Lee, H. M. & Chiu, P. L. (2004). Acta Cryst. E60, ol385-ol386.

Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). *Tetrahedron*, 60, 5807–5825.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002). SADABS. Version 2.04. University of Göttingen, Germany.